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Abstract. Calculations of the electron velocity in superlattices based on the miniband dispersion relation,
and the velocity defined through the tunneling time are discussed. The former definition is based on the
intrinsically infinite modified Kronig-Penney model, while the latter rests upon the transfer matrix method
and takes the finiteness of the superlattice into account. The main result is that the velocities differ: for
weakly coupled structures where the tunneling time can be defined through the linewidth, the transfer
matrix method predicts a smaller velocity than the modified Kronig-Penney model.

PACS. 73.21.Cd Superlattices – 73.20.At Surface states, band structure, electron density of states –
73.40.Gk Tunneling – 03.65.Xp Tunneling, traversal time, quantum Zeno dynamics

1 Introduction

In resonant tunneling diodes (RTDs) and short period su-
perlattices (SLs) resonant tunneling dominates the trans-
port behavior [1]. A comprehensive review on superlattice
transport was given recently [2]. In the coherent trans-
port regime one important parameter is the transmission
coefficient, which is defined as the ratio of the incoming
and the transmitted probability current density through
the structure. A second important factor is the velocity of
electrons inside SLs. The group velocity of the superlat-
tice dispersion relation of the (modified) Kronig-Penney
model [3,4] has been widely used in calculations. Here
we show that a different velocity definition based upon
the tunneling time might be useful in coherent transport.
For weakly coupled structures the transmission coefficient
has a Lorentzian line shape near the transmission reso-
nances. In these cases the tunneling time of the electrons
can be determined from the Half Width at Half Maximum
(HWHM) of the resonant peak [5]. From these tunneling
times for each individual energy level in a SL, a discrete
(non-continuous) velocity – wave vector characteristic can
be derived.

2 Comparison between infinite and finite
model

The modified Kronig-Penney model assumes an infinite
number of superlattice periods. The Bloch condition
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Ψ(z + d) = exp(iqd) · Ψ(z) leads to the well known im-
plicit equation [4]:

P (E) = cos(qd), (1a)

where

P (E) := −1
2
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)
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(1b)

Here E is the energy, kw and kb are the wave vectors in
the wells (width w) and in the barriers (width b), respec-
tively, d is SL period, and q is the Bloch wave-vector. For
a given (real) q, equation (1b) is only solvable for ener-
gies defining the dispersion relation E(q) of the so-called
minibands. For one set of material parameters the solu-
tion is plotted as the solid line in Figure 1. Due to the
time-inversion symmetry of the Hamilton operator of the
considered systems the dispersion relation fulfills the con-
dition E(q) = E(−q).

Usually the velocity inside a miniband is then calcu-
lated using the group velocity νg = dω/dq.

The transmission spectra of structures with a finite
number of potential periods are generally studied with the
help of transfer matrices. For a standard SL with N peri-
ods (where each period includes one barrier and one well)
the transmission probability is given by [6,7]:

T =
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Fig. 1. Dispersion relation for SLs obtained by the modified
Kronig-Penney model (solid line – infinite number of potential
periods) and by the transfer matrix model (15 (circles) and
25 (asterisk) periods).

where UN−1 denotes the Chebyshev polynomial of the
second kind of order N − 1 and ξ and P (E) have been
defined in equation (1b). Recently it was shown [6,8]
that the condition for resonances in the SL transmission
(T = 1) is given by:

P (Ei) = cos
iπ

N
, i = ±1 . . .± (N − 1). (3)

Identifying the arguments of the cosines in equation (1a)
and (3) we end up with the discrete dispersion relation
(also shown in Fig. 1, by symbols):

P (Ei) = cos qid, (4)

where the discrete qi values are given by [6]:

qi =
iπ

Nd
=

iπ

L
, i = ±1 . . .± (N − 1), (5)

and L = Nd is the length of the superlattice. Fig-
ure 2 shows a typical transmission spectrum (obtained by
Eq. (2)) for a SL with 15 periods with characteristic peaks
at Ei and corresponding maximum values equal to unity.
At these distinct energies the presence of wave functions
that spread throughout the whole structure is revealed.

From Figure 2 one can clearly see the different
HWHMs, ∆E(qi), of the resonant peaks. These resonant
tunneling widths implicate the electron lifetime τ(qi) in
the individual energy levels [5,9]. In the case of 100%
transmission probability (and only then!), the electron
lifetime τ(qi) is equal to the dwell time [10,11] that is
a measurable quantity [12,13]. The tunneling time at the
resonance energy is also the transition time of a conven-
tional wave-packet [5]. Therefore, it can be used to define

Fig. 2. Transmission spectrum for a GaAs/Al0.3Ga0.7As
6.5/2 nm thick layers semiconductor superlattice with 15 peri-
ods, revealing peak positions and widths.

the tunneling velocity, νtunnel(q), of the finite system:

νtunnel(qi > 0) =
L

τ(qi)
=

L · ∆E(qi)
�

, (6)

where L is the SL length. In the infinite approach, the
electron velocity of a single Bloch state is given by the
group velocity [14]. In contrast, in a finite structure the
wave function is in general not given by a single Bloch
state [8,15]. Consequently the electron velocity (6) can
differ from the group velocity.

3 Numerical studies of GaAs/AlGaAs
superlattices

We started the study with a SL composed of 6.5 nm
thick GaAs wells and 2 nm thick Al0.3Ga0.7As barriers,
respectively. We used energy dependent effective masses
mb/w = mb/w(E) to account for the non-parabolicity ef-
fect [16]. The conduction band offset (barrier height) for
these materials is chosen to be 0.28809 eV. (Throughout
this work this set of parameters is used.)

3.1 Miniband position

The transmission is essentially zero outside the miniband
extending in the range of 44.8 meV < E < 75.6 meV
for the first miniband (Fig. 2). The energy levels with
their corresponding discrete wave-vectors directly impli-
cate the dispersion relation of the periodic structure. In
Figure 1 we compare the discrete dispersion relations for
SL with 15 and 25 periods (circles and asterisks), respec-
tively (Eq. (4)), and the continuous one (Eq. (1)). Since a
SL with N periods (without additional barrier at the end
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of the structure) has N −1 energy levels in each miniband
we see 14 and 24 discrete values, respectively.

Due to the equations (1a) and (4), the discrete values
coincide exactly with the continuous ones. The underly-
ing reasons are the same boundary conditions between the
interfaces, while only the boundary conditions to the sur-
roundings are different. By increasing the number of SL
periods the discrete characteristic looks more and more
continuous like matching the modified Kronig-Penney’s.
Therefore, for higher number of periods it does not mat-
ter which model we use to determine the miniband width,
while for smaller number of periods, we can make quite
rough approximation (in our case deviation of 3% for a
15 period structure).

3.2 Miniband velocity

In Figure 3 we show a comparison between the group ve-
locity and the velocity defined through the tunneling time
(tunneling velocity), equation (6), respectively. Like the
group velocity νg, the tunneling velocity νtunnel is inde-
pendent of the SL length since increasing the number of
periods increases the length of the SL but decreases the
width of the resonances just that much that the veloc-
ity stays the same [15]. To confirm this we calculated the
maximum tunneling velocity νtunnel for a SL with 2000 pe-
riods. νmax was 9.280× 104 m/s, and differs slightly from
those in Figure 3 for 25 periods (νmax is 9.279× 104 m/s)
only due to the fact that both velocities are not necessarily
taken at the same energy and/or due to better approxi-
mated peak shape by a Lorentzian for higher number of
periods. The most important observation shown in Fig-
ure 3 is the big difference between the group velocity and
the tunneling velocity νtunnel. While the shape of both
relations is pretty much the same (except at the band
edges), the group velocity exhibits a much higher νmax

(2.004 × 105 m/s).
To study this discrepancy we calculated both veloc-

ity characteristics for an increased barrier width keeping
the well width constant (Fig. 4a). Both ν(q) character-
istics change (they both decrease), with the effect of an
even bigger difference between them. From these results
we can very clearly see the suppression of the electron ve-
locity in all periodic structures, where the energy bands
are composed of Lorentzian peaks. If we decrease the bar-
rier width b, the tunneling velocity νtunnel approaches the
group velocity (Fig. 4b) and they become approximately
equal for b = 1.2 nm. A further decrease of b leads to
νtunnel > νg (Fig. 4c). The same effect occurs when the
barrier width is kept constant and the well width is in-
creased.

To explain these phenomena we studied the trans-
mission spectra. By broadening the barriers and/or the
wells the resonant peaks get sharper and more and more
Lorentzian – the miniband becomes less coupled (Fig. 4a).
In these situations the velocity determined from the
HWHM tunneling time is relevant and there is velocity
suppression compared to the group velocity. For making

Fig. 3. Group velocity (solid line) and tunneling velocity, equa-
tion (6), (discrete values) vs. wave-vector of SLs with barrier
width b = 2 nm and well width w = 6.5 nm. Open circles and
asterisks are discrete values for 15 and 25 period SL, respec-
tively. The corresponding transmission spectrum is shown in
Figure 2.

the barriers and/or the wells thinner, the coupling in-
creases and the peak shape starts to deviate appreciably
from Lorentzian (Fig. 4c). Therefore, the HWHM cannot
be used to determine the tunneling time from the trans-
mission spectrum anymore. From a rough estimation we
claim that the tunneling velocity approach gives correct
results for the velocity in SLs with transmission valley val-
ues between the SL resonances below T = 0.25. For SLs
with non-Lorentzian peaks the velocities cannot be calcu-
lated by our model.

4 Discussion

Our explanation for the discrepancy between the group
and the tunneling velocity is that both velocity definitions
correspond to different physical quantities. The group ve-
locity determines the Bloch electron velocity inside an in-
finite structure, no matter how the electrons were first
inserted. The tunneling velocity takes the injection and
extraction of electrons at the boundaries of the SL into
account. Our statement that the velocity through finite
SLs does not change with the number of periods was based
on the observation that the tunneling time increases pro-
portionally to the number of periods. Therefore we can
conclude that it is not a constant tunneling time that is
additionally spent at the boundaries of the finite SL but
that the velocity through the complete structure is sup-
pressed. In order to support this conclusion we modified
the outermost barrier widths, b′, to influence the coupling
between the SL and the surrounding. This modification
appreciably changes the transmission spectrum and the
tunneling velocity. Figure 5 shows the tunneling velocities
for outermost barriers widths of 2.2 and 1.8 nm, respec-
tively, in comparison to a SL where all barriers are the
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Fig. 4. Group velocity (solid line) and tunneling velocity, equation (6), (dashed line) vs. wave-vector of SLs with: (a) b = 2.9 nm
and w = 6.5 nm; (b) b = 1.7 nm and w = 6.5 nm; and (c) b = 1.1 nm and w = 6.5 nm, respectively. On the right-hand side
the corresponding transmission spectra for SLs with 15 periods are plotted. Since the shape of the transmission peaks deviates
strongly from Lorentzian in Figure (c), the resulting tunneling velocity characteristic is not valid.

same. The decreasing of the outermost barrier widths in-
creases the tunneling velocity, and vice versa. This demon-
strates the strong influence of the boundary conditions on
the tunneling velocity. Therefore, we conclude finally that
the different boundary conditions of an infinite and a finite
system lead to the difference between the group velocity
and the tunneling velocity approach.

The whole treatment is in the context of coherent
transport, and our results are only valid in this case, i.e.
for structures which are shorter than the coherence length.
In structures longer than the coherence length; scatter-
ing processes allow for redistribution of carriers, then the
group velocity entering the Boltzmann equation is impor-
tant for the calculation of the current density [2]. In the
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Fig. 5. Tunneling electron velocity in a SL with 25 periods
where all barriers have width of b = 2 nm (circles) in com-
parison to SLs with b = 2 nm and outermost barrier widths
of b′ = 2.2 nm (asterisks) and b′ = 1.8 nm (diamonds), re-
spectively. The well widths are 6.5 nm throughout all three
structures.

limit of structures much longer than the coherence length,
without electric field applied, scattering processes lead to
a homogeneous electron distribution in k-space. Then, at
average contributions of electrons with positive and nega-
tive k-values (velocities) cancel out, leading to a vanishing
current.

5 Conclusions

Our numerical analysis has shown a difference between
the group velocity and the velocity defined through
the tunneling time, equation (6), for coherent elec-
tron transport in superlattices. The calculation of the
tunneling velocity in a finite weakly coupled SL can
be performed by the following steps: i) calculation of
the transmission spectrum of the SL (transfer matrix
method), ii) determination of the HWHM of the res-
onance peaks in the spectrum, iii) calculation of the
velocity using the tunneling time, i.e. equation (6).
Compared to the group velocity this method has the
advantage of taking into account the correct boundary
conditions of the finite system. In the regime where the

tunneling time can be derived from the HWHM of the
transmission peaks the tunneling velocity is smaller than
the group velocity. The group velocity was used to deter-
mine the electron mean free path from the scattering time
(e.g. in undoped SLs [17,18]). Our results indicate that the
tunneling velocity might be a more suitable choice, espe-
cially for weakly coupled SL where the differences can be
appreciable.
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